Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(13): 132501, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451548

RESUMO

New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

2.
Phys Rev Lett ; 111(21): 212501, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313482

RESUMO

The magnetic moments and isotope shifts of the neutron-deficient francium isotopes (202-205)Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for (202)Fr. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to (205)Fr, with a departure observed in (203)Fr (N=116).

3.
Phys Rev Lett ; 104(25): 252502, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867369

RESUMO

Collinear laser spectroscopy was performed on Ga (Z=31) isotopes at ISOLDE, CERN. A gas-filled linear Paul trap (ISCOOL) was used to extend measurements towards very neutron-rich isotopes (N=36-50). A ground state (g.s.) spin I=1/2 is measured for 73Ga, being near degenerate with a 3/2{-} isomer (75 eV≲E{ex}≲1 keV). The 79Ga g.s., with I=3/2, is dominated by protons in the πf{5/2} orbital and in 81Ga the 5/2{-} level becomes the g.s. The data are compared to shell-model calculations in the f{5/2}pg{9/2} model space, calling for further theoretical developments and new experiments.

4.
Phys Rev Lett ; 103(14): 142501, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19905565

RESUMO

We report the first confirmation of the predicted inversion between the pi2p3/2 and pi1f5/2 nuclear states in the nu(g)9/2 midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of 71,73,75Cu, which measured the nuclear spin and magnetic moments. The obtained values are mu(71Cu)=+2.2747(8)mu(N), mu(73Cu)=+1.7426(8)mu(N), and mu(75Cu)=+1.0062(13)mu(N) corresponding to spins I=3/2 for 71,73Cu and I=5/2 for 75Cu. The results are in fair agreement with large-scale shell-model calculations.

5.
Phys Rev Lett ; 99(21): 212501, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-18233211

RESUMO

We report on the first determination of the nuclear ground-state spin of 33Mg, I=3/2, and its magnetic moment, mu= -0.7456(5) mu(N), by combining laser spectroscopy with nuclear magnetic resonance techniques. These values are inconsistent with an earlier suggested 1 particle-1 hole configuration and provide evidence for a 2 particle-2 hole intruder ground state with negative parity. The results are in agreement with an odd-neutron occupation of the 3/2 [321] Nilsson orbital at a large prolate deformation. The discussion emphasizes the need of further theoretical and experimental investigation of the island of inversion, a region previously thought to be well understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...